Matrix Representations of Octonions and Their Applications

نویسنده

  • Yongge Tian
چکیده

As is well-known, the real quaternion division algebra H is algebraically isomorphic to a 4-by-4 real matrix algebra. But the real division octonion algebra O can not be algebraically isomorphic to any matrix algebras over the real number field R, because O is a non-associative algebra over R. However since O is an extension of H by the Cayley-Dickson process and is also finite-dimensional, some pseudo real matrix representations of octonions can still be introduced through real matrix representations of quaternions. In this paper we give a complete investigation to real matrix representations of octonions, and consider their various applications to octonions as well as matrices of octonions. AMS Mathematics Subject Classification: 15A33, 15A06, 15A24, 17A35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks regarding Quaternions and Octonions

In this paper, we present some applications of quaternions and octonions. We present the real matrix representations for complex octonions and some of their properties which can be used in computations where these elements are involved. Moreover, we give a set of invertible elements in split quaternion algebras and in split octonion algebras.

متن کامل

An algorithm for multiplication of split-octonions

In this paper we introduce efficient algorithm for the multiplication of split-octonions. The direct multiplication of two split-octonions requires 64 real multiplications and 56 real additions. More effective solutions still do not exist. We show how to compute a product of the split-octonions with 28 real multiplications and 92 real additions. During synthesis of the discussed algorithm we us...

متن کامل

Derivation of a low multiplicative complexity algorithm for multiplying hyperbolic octonions

Abstract. We present an efficient algorithm to multiply two hyperbolic (countercomplex) octonions. The direct multiplication of two hyperbolic octonions requires 64 real multiplications and 56 real additions. More effective solutions still do not exist. We show how to compute a product of the hyperbolic octonions with 26 real multiplications and 92 real additions. During synthesis of the discus...

متن کامل

Vector Coherent States on Clifford Algebras

The well-known canonical coherent states are expressed as an infinite series in powers of a complex number z and a positive sequence of real numbers ρ(m) = m!. In this article, in analogy with the canonical coherent states, we present a class of vector coherent states by replacing the complex variable z by a real Clifford matrix. We also present another class of vector coherent states by simult...

متن کامل

TfHE OCTONIONS

The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics. Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups. We also touch upon thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000